
PHYSICAL REVIEW E 67, 021108 ~2003!
Self-consistent theory of collective Brownian dynamics: Theory versus simulation
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A recently developed theory of collective diffusion in colloidal suspensions is tested regarding the quanti-
tative accuracy of its description of the dynamics of monodisperse model colloidal systems without hydrody-
namic interactions. The idea is to exhibit the isolated effects of the direct interactions, which constitute the
main microscopic relaxation mechanism, in the absence of other effects, such as hydrodynamic interactions.
Here we compare the numerical solution of the fully self-consistent theory with the results of Brownian
dynamics simulation of the van Hove functionG(r ,t) and/or the intermediate scattering functionF(k,t) of
four simple model systems. Two of them are representative of short-ranged soft-core repulsive interactions
@(s/r )m, with m@1], in two and in three dimensions. The other two involve long-ranged repulsive forces in
two ~dipolar,r 23 potential! and in three~screened Coulomb, or repulsive Yukawa interactions! dimensions. We
find that the theory, without any sort of adjustable parameters or rescaling prescriptions, provides an excellent
approximate description of the collective dynamics of these model systems, particularly in the short- and
intermediate-time regimes. We also compare our results with those of the single exponential approximation and
with the competing mode-mode coupling theory.
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I. INTRODUCTION

One of the most directly measurable dynamic phenom
of a colloidal dispersion is the relaxation of the fluctuatio
dn(r ,t) of the local concentrationn(r ,t) of colloidal par-
ticles around its bulk equilibrium valuen. The average deca
of dn(r ,t) is described@1,2# by the time-dependent correla
tion function^dn(r ,t)dn(r 8,0)&, referred to as the van Hov
function G(ur2r 8u,t). This property can be determined d
rectly by means of techniques such as digital video micr
copy. Dynamic light scattering, on the other hand, measu
directly the Fourier transformF(k,t) of G(r ,t), referred to
as the intermediate scattering function. This property c
tains, in principle, all the relevant dynamic information
the equilibrium suspension. Thus, the development of c
ceptually clear, and quantitatively accurate, statistical m
chanical theories is required for the fundamental understa
ing of this important dynamic property.

With this aim, in recent work a self-consistent theory
colloid dynamics has been developed@3–5#. In the absence
of hydrodynamic interactions, this scheme allows the cal
lation of F(k,t) and its self-diffusion counterpart,FS(k,t),
given the effective interaction pair potentialu(r ) between
colloidal particles, and the corresponding equilibrium sta
structure, represented by the radial distribution functiong(r )
or the static structure factorS(k) @5F(k,t50)#. This
theory, referred to as the self-consistent generalized Lan
vin equation~SCGLE! theory, is based on general and exa
expressions forF(k,t) andFS(k,z), in terms of a hierarchy
of memory functions, derived within the generalized Lang
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vin equation~GLE! approach and the process of contracti
of the description, and complemented by a number of ph
cally or intuitively motivated approximations. In its rece
presentation in Ref.@3#, this theory only referred to mode
monodisperse suspensions of spherical particles in the
sence of hydrodynamic interactions, and its quantitative
curacy was tested through the comparison of its predicti
for a specific idealized model system, with the correspond
Brownian dynamics computer simulation data. The same
oretical scheme is also being extended to describe collo
mixtures, the effect of hydrodynamic interactions, and
ideal ergodic–nonergodic transition. A clear and simple d
cussion of these effects, however, will benefit from a syste
atic assessment of the intrinsic accuracy and limitations
the same theoretical scheme under the simplest possible
ditions ~model monodisperse suspensions of spherical p
ticles with no hydrodynamic interactions!.

For this reason, we have carried out a systematic comp
son of the predictions of this theory and the correspond
computer simulation data for four idealized model system
The first two are two-dimensional systems with power-la
pair interaction,bu(r )5A/r n, with n550 ~strongly repul-
sive, almost hard-disk-like! and with n53 ~long-range
dipole-dipole interaction!. The third one is the three
dimensional weakly screened repulsive Yukawa poten
~whose two-dimensional version was studied in Ref.@3#!.
The last system considered involves short-ranged soft-c
repulsive interactions. The dynamic equivalence betw
this and the strictly hard-sphere system allows us to disc
also the properties of the latter. For all these systems,
calculated G(r ,t) and/or F(k,t) from the self-consisten
theory, and performed Brownian dynamics simulatio
~without hydrodynamic interactions! to carry out extensive
quantitative comparisons.

The aim of this exercise is to isolate the effects of t
©2003 The American Physical Society08-1
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most important mechanism for the relaxation of the conc
tration fluctuations in colloidal liquids, namely, the nondis
pative direct interaction forces between the colloidal p
ticles. The quantitative theoretical description of these effe
constitutes by itself a demanding and relevant challenge.
are interested, however, in a careful analysis of the pre
tions of this theoretical scheme under rather simple con
tions, in order to have reliable information to be used a
reference in the development of this scheme into a m
comprehensive theory that also includes the effects of hy
dynamic interactions, or the extension to colloidal mixtur

Let us mention that the theory discussed here is certa
not the only proposal available of a fully self-consiste
scheme for the collective and self-dynamics of colloidal s
pensions. In fact, as early as in 1982, Hess and Klein@6#
proposed the translation to colloids of the mode-coupl
self-consistent theory of molecular liquids@7,8#. Although
their proposal included an initial version of a fully sel
consistent scheme for colloidal systems, only until recen
extensive calculations based on such a theory were repo
in the literature@9#. More recently, Na¨gele and collaborators
have developed a more elaborate version of this mo
coupling theory specifically devised to deal with colloid
liquids @10#. The resulting self-consistent scheme has b
extended and applied in several interesting directions@11#,
although only until recently the level of its quantitative a
curacy at short and intermediate times has been docume
@12,13#. The present theory shares with such proposal a n
ber of important features, such as the prediction of the id
glass transition@8# in a monodisperse system and the pos
bility of extension to more complex conditions. This is
consequence of the similarity in the mathematical struct
of the resulting self-consistent schemes. As it was discus
in Ref. @3#, however, the main difference of the propos
analyzed here, with respect to the various mode-coupl
based theories, lies in the conceptual framework upon wh
the former was built. Similarly, there is no direct relationsh
between the conceptual basis of the present theory and
of other theories of colloid dynamics partially or fully base
on kinetic-theoretical concepts@14,15#.

In what follows, we provide a brief summary of th
SCGLE theory for colloid dynamics. In order for this pap
to be reasonably self-contained, this will involve a certa
degree of repetition with respect to Ref.@3#. For the reader
interested in all the details and subtleties of the derivation
this theory, however, this summary is not a substitute of
direct consultation of Refs.@3–5#, which describe the physi
cal content and the rationale of each of the approximati
involved in the present theory, and which explicitly monit
the quantitative accuracy of the most essential of them.
numerical solution of the resulting SCGLE scheme for fo
specific model systems, and their comparison with Brown
dynamics computer simulation data, constitute the main
sults of this work, and are reported in Secs. III through VI.
practice, the theory requires as an input the static struct
properties@i.e., the radial distribution functiong(r ) or the
static structure factorS(k)] of the system. In order to avoid
additional approximations, such as those involved in the
of approximate liquid-theory integral equations, these pr
02110
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erties will also be provided by the computer simulations. A
the simulation results reported in this paper correspond
Brownian dynamics simulation in the absence of hydrod
namic interactions, and at the beginning of Sec. III we su
marize some relevant technical data of such simulatio
Sections III and IV contain the comparison of theory a
simulation for the two-dimensional systems with power-la
pair interaction,bu(r )5A/r n, with n550 and withn53,
respectively. In Secs. V and VI we discuss, respectively
similar comparison for the three-dimensional weak
screened repulsive Yukawa potential, and for a soft-c
strongly repulsive potential at very high concentrations. T
equivalence of the latter with the hard-sphere system is
discussed in Sec. VI. In Secs. V and VI, we also compare
results with those of other competing theories, particula
the mode-coupling scheme of Na¨gele and collaborators
@12,13#. The main conclusions are summarized in Sec. V

II. SELF-CONSISTENT GLE THEORY

The self-consistent generalized Langevin equation the
discussed here, as originally presented in Ref.@3#, is explic-
itly based on the formalization of two physically intuitiv
notions, namely, that collective diffusion should be related
a simple manner to self-diffusion, and that space-depend
self-diffusion, in its turn, should be related in a simple ma
ner to the mean squared displacement~or some other
k-independent self-diffusion property!. The development of
this theory involved four distinct fundamental elements. T
first consists of the most general and exact expressions
F(k,z) andFS(k,z) in terms of a hierarchy of memory func
tions. The general method~i.e., the generalized Langevi
equation approach@16,17#! employed to derive such exac
expressions has been explained and illustrated in Ref.@5#.

The second element consists of the formalization of
notion that collective dynamics should somehow be sim
related to self-dynamics. Vineyard’s approximation@18# is a
simple ~although qualitatively and quantitatively rathe
primitive @19,20#! implementation of this idea. This aspe
was also discussed in all detail separately; thus, in Ref.@4#,
the general expressions forF(k,z) andFS(k,z) in terms of
higher-order memory functions were employed to propo
and test a hierarchy of Vineyard-like approximations. Ado
ing any of these approximations reduces the problem of
loid dynamics to the determination ofFS(k,z) or any of its
memory functions.

The third basic element of the present theory consists
the proposal for the approximate determination ofFS(k,t).
This step is also based on a physically intuitive expectati
namely, that space-dependent self-diffusion@represented by
FS(k,t)] should be simply related to the properties that ch
acterize the Brownian motion of individual particles@1,6#,
just like in the Gaussian approximation, which expres
FS(k,t) in terms of the mean-squared displacementW(t) as
FS(k,t)5e2k2W(t). The present self-consistent theory intr
duces an analogous approximate connection between
functionsFS(k,t) andW(t), but at the level of their respec
tive memory functions. The memory function ofW(t) is the
so-called time-dependent friction functionDz(t). Thus, a fi-
8-2



f a

vi

n
ze
,
th

he
-
ua
he
io

tic

ie
tio
p

to
e
y

th

r

nt

,

e-

on
ms

ntly

le
te

, but
in
ry

ave
der
sed

is

-

ers
an
-

ns
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nal ingredient in the development of the theory consists o
expression forDz(t) in terms of F(k,t) and FS(k,t) that
results from the application of the generalized Lange
equation formalism to tracer-diffusion phenomena@16#. Such
a closure relation finally determines our fully self-consiste
theory of colloid dynamics. In what follows, we summari
the main results of Refs.@3–5#, which contain, respectively
these four fundamental elements of the construction of
present theory.

In Ref. @5#, the GLE approach, and the concept of t
contraction of the description@16,17#, was employed to de
rive the most general time-evolution equation for the fluct
tions dn(r ,t) of a monodisperse colloidal suspension in t
absence of hydrodynamic interactions. In such a derivat
the assumed underlying microscopicN-particle dynamics
was provided by the many-particle Langevin equation@1#. As
a result, expressions are derived forF(k,t) andFS(k,t) @or
their Laplace transformsF(k,z) andFS(k,t)] in terms of a
hierarchy of memory functions, and of well-defined sta
structural properties of the Brownian fluid@5#. In these ex-
pressions, the Brownian relaxation timetB[M /z0 ~or the
corresponding frequencyzB[tB

21) appears, whereM andz0

are, respectively, the mass and the solvent-friction coeffic
of each particle in the suspension. In the absence of fric
(z0→0), these expressions correspond to those of a sim
atomic liquid@20#. In the presence of friction, and in order
‘‘tune’’ these expressions to the time regime normally prob
by dynamic light scattering experiments, or by Brownian d
namics simulations, the limitt@tB , or z!zB, must be taken.
Taking this so-called ‘‘overdamping’’ limit@6# requires a
careful analysis, which was the main subject of Ref.@5#. As
a result, one gets the most general expression forF(k,t) and
FS(k,t) that describes the dynamics of the suspension in
diffusive regime~i.e., for timest@tB). The resulting ‘‘over-
damped’’ expressions forF(k,z) and FS(k,z) read, in
Laplace space, as@5#

F~k,z!5
S~k!

z1
k2D0S21~k!

11C~k,z!

, ~1!

FS~k,z!5
1

z1
k2D0

11CS~k,z!

, ~2!

where C(k,z) and CS(k,z) are memory functions that, in
turn, can be written in terms of the higher-order memo
functionsDL(k,z) andDLS(k,z) as

C~k,z!5
k2D0x~k!

z1x21~k!L0~k!1x21~k!DL~k,z!
~3!

and

CS~k,z!5
k2D0xS~k!

z1xS
21~k!LS

0~k!1xS
21~k!DLS~k,z!

. ~4!
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In these equationsD05kBT/z0 is the free-diffusion coeffi-
cient of each particle (kBT being the thermal energy!, S(k)
the static structure factor, andx(k) the static correlation
function of the fluctuations of the configurational compone
of the stress tensor of the Brownian fluid@notice that in Ref.
@5# x(k) andDL(k,z) carry a subindex ‘‘UU ’’ that we shall
drop systematically here#. x(k) andL0(k), along with their
self counterpartsxS(k) and LS

0(k), are static properties
which can be written exactly@see Eqs.~A1! through~A4! of
the Appendix# in terms of the two- and three-particle corr
lation functions,g(r ) andg(3)(r ,r 8), which are assumed to
be known. In practice, the use of Kirkwood’s superpositi
approximation allows us to write these properties in ter
only of g(r ) @see Eq.~A6!#. Thus, the only unknowns in the
expressions forF(k,t) and FS(k,t) in Eqs. ~1!–~4! are the
memory functionsDL(k,z) andDLS(k,z).

We should mention that several authors, most rece
Nägele and collaborators@10,11#, have derived the results in
Eqs. ~1! and ~2!, using the projection operator formalism
within the N-particle Smoluchowski dynamics.C(k,z) and
CS(k,z) are referred to as the normalized irreducib
memory functions. The starting points of the approxima
theory developed here are indeed these general results
complemented with the additional information contained
Eqs. ~3! and ~4!, which expresses the irreducible memo
functions C(k,z) and CS(k,z) in terms of the still higher-
order memory functionsDL(k,z) andDLS(k,z).

NeglectingDL(k,z) and DLS(k,z) in Eqs. ~3! and ~4!
leads to the so-called single exponential~SEXP! approxima-
tion @21,22#, that consists of Eqs.~1! and ~2! with

C~k,z!'CSEXP~k,z![
k2D0x~k!

z1x21~k!L0~k!
~5!

and

CS~k,z!'CS
SEXP~k,z![

k2D0xS~k!

z1xS
21~k!LS

0~k!
. ~6!

This approximation is exact at short times and/or large w
vectors, and constitutes a simple but nontrivial zeroth-or
level of approximation of the self-consistent theory discus
here, which involves nonzero memory functionsDL(k,z)
andDLS(k,z).

The second element in the construction of this theory
the proposal of an approximate relationship betweenF(k,t)
and FS(k,t). Vineyard’s approximation consists of the sim
plest of such relations, in whichF(k,t) is approximated di-
rectly by FS(k,t)S(k). In Ref. @4#, we performed a detailed
numerical study of alternative, more sophisticated mann
to refer collective dynamics to self-diffusion. Rather th
relatingF(k,t) directly to FS(k,t), we proposed to approxi
mate a given memory function ofF(k,t) by the correspond-
ing memory function ofFS(k,t). As an illustration, consider
Eqs. ~1!–~4!. This suggests to relateF(k,z) to FS(k,z)
through their highest-order memory functionsDL(k,z) and
DLS(k,z). The detailed manner in which this is done tur
out to be important, as it was discussed in Ref.@4#, where it
8-3
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was shown that the most accurate and fundamental prop
for a Vineyard-like connection betweenF(k,z) and
FS(k,z) , among the ones that can be suggested by the
eral results in Eqs.~1!–~4!, is defined through the following
approximation:

DL~k,z!

L0~k!
5

DLS~k,z!

LS
0~k!

. ~7!

Taken together with Eqs.~1!–~4!, this equation defines a
approximate scheme that allows us to expressF(k,z) and
FS(k,z) in terms of a single normalized memory functio
namely, DLS(k,z)/LS

0(k). One reason for the accuracy o
this Vineyard-like approximation is the fact that the use
the exact results in Eqs.~1!–~4! guarantees that, indepen
dently of the value ofDL(k,z) andDLS(k,z), the resulting
expressions forF(k,t) and FS(k,t) will satisfy exactly the
first three~short-time! moment conditions@23,24#.

In practice, however, in Ref.@3# and in this work we
employ a Vineyard-like relation betweenF(k,z) andFS(k,z)
which is defined in terms of a simple connection between
memory functionsC(k,z) and CS(k,z), but which happens
to be just as accurate as the most sophisticated propos
Eq. ~7!. This Vineyard-like approximation also preserves t
exact short-time behavior up to ordert3 for F(k,t) and
FS(k,t), and is defined by the general results in Eqs.~1! and
~2!, along with the following approximate relation@4#:

C~k,z!

CSEXP~k,z!
5

CS~k,z!

CS
SEXP~k,z!

, ~8!

whereCSEXP(k,z) andCS
SEXP(k,z) are given, respectively, by

Eqs. ~5! and ~6!. Just like the previous higher-orde
Vineyard-like approximation, this scheme refers bothF(k,z)
andFS(k,z), through Eqs.~1!, ~2!, and~8!, to the knowledge
of a single memory function, namely,CS(k,z). Thus, the
remaining problem is to find some form of approximation f
this memory function.

In contrast to the previous elements of the construction
the present theory, which are the straightforward formali
tion of two intuitive physical expectations, we do not have
similarly transparent physical notion to guide us in the co
struction of an approximate expression for this mem
function. We know, however, two exact limits thatCS(k,z)
must satisfy. Thus, for large wave vectors,Cs(k,z) is given
exactly by Cs

SEXP(k,z), whereas for small wave vector
Cs(k,z) is given exactly by the Laplace transform,Dz(z), of
a functionDz(t), referred to as the time-dependent frictio
function. ForDz(t), a general approximate expression h
also been derived within the framework of the GLE approa
@16#. This expression is

Dz~ t !5
kBTn

~2p!3z0E dk
@kzh~k!#2

11nh~k!
F~k,t !FS~k,t !. ~9!

Thus, in Ref.@3# it was proposed to interpolateCS(k,z) be-
tween these two exact limits by means of the following e
pression:
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CS~k,z!5CS
SEXP~k,z!1@Dz~k!2CS

SEXP~k,z!#l~k!,
~10!

where l(k) is a phenomenological interpolating functio
such thatl(k)→1 for k→0, and l(k)→0 for k→`. In
Ref. @3#, a functional form of the general typel(k)5@1
1(k/kc)

n#21 was proposed, and the choice of the parame
kc andn was made by comparing the theoretical predictio
for various values ofkc and n with exact ~computer simu-
lated! data for a particular model system, at a given state,
at a given time. This led to the following prescription fo
l(k):

l~k!5
1

11S k

kmin
D 2, ~11!

wherekmin is the position of the first minimum of the stati
structure factorS(k) of the system.

The self-consistent scheme that results from all the ar
ments and approximations above can then be summarize
Eqs. ~1!, ~2!, ~8!–~11!. In Ref. @3#, it was shown that the
predictions of this scheme tuned out to be highly accurate
other times and other states of the same model system~two-
dimensional repulsive Yukawa Brownian fluid! employed to
calibrate the parameterskc and n of the interpolating func-
tion l(k). As we demonstrate now, the level of accuracy
the same theory, withl(k) now fixed by the same prescrip
tion in Eq. ~11!, continues to be equally accurate, at lea
when applied to other representative model systems, like
ones studied in the following sections.

In reference to the relatively arbitrary choice of a partic
lar functional form forl(k), we may say that this corre
sponds, for example, to the choice of a particular ver
function in the self-consistent theories derived within t
well-known mode-coupling approaches@6–13#. Also in that
theory, a sensible guess of the right vertex function m
compensate our otherwise fundamental ignorance of the
tailed manner in which the many-body microscopic dyna
ics determines the macroscopic laws that describe the ex
mentally observed behavior of our system.

The self-consistent scheme consisting of Eqs.~1!, ~2!, and
~8!–~11! has to be solved numerically. As an input, we e
ploy the computer-simulated radial distribution functiong(r )
for the desired pair potential, and then calculate all the c
responding static properties@S(k),x(k),L0(k),xS(k), and
LS

0(k)], as described in the Appendix. Equations~1!, ~2!, ~8!,
and ~10! are then written int space as a set of couple
integro-differential equations involving the dimensionle
wave vector variableks and time variablet/t0 , with t0
[s2/D0 , s being the particle diameter. The functions ofk
andt are then discretized in a mesh of points large enoug
ensure independence of the solution with respect to the
of the mesh. The solution of the discretized system of eq
tions is solved by a straightforward direct iteration metho
The corresponding numerical solutions are presented in
following sections.
8-4
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III. TWO-DIMENSIONAL SYSTEM WITH STRONGLY
REPULSIVE FORCES

The first model system we consider is a two-dimensio
Brownian fluid system with strongly repulsive interaction
determined by the pair potential

bu~r !5
6

~r /s!50
. ~12!

The reason we studied in detail this particular model s
tem is that it constitutes a reasonable representation
hard-core system by a steep, but continuous, pair poten
For the latter, we can calculate some properties@the short-
time moment conditions ofF(k,t), for example#, that do not
exist for a discontinuous potential. In addition, exactly th
model system was found to fit the experimentally determin
structure of a real quasi-two-dimensional suspension stu
by Santana-Solano and Arauz-Lara@25#. Here, however, we
only wish to compare the time evolution ofG(r ,t), as pre-
dicted by the SCGLE theory, with that determined
Brownian dynamics computer simulations.

Our Brownian dynamics simulations follow the rath
conventional approach based on the Ermak-McCammon
gorithm with periodic boundary conditions@26–28#. The
simulation results presented in this paper were produced
we made a careful choice of the size of the cubic simulat
cell, the number of particles, the time step, the length of
run, etc., so as to eliminate any artificial dependence on th
parameters. In Table I we summarize the values of th
parameters, corresponding to the simulation of the four s
tems considered in this paper.

Figure 1 exhibitsG(r ,t) for the model system in Eq.~12!
at a reduced concentrationn* 5ns250.50 (f5pn* /4
50.3927) and for two times representative of the short- a
intermediate-time regimes. For the system in Fig. 1, the o
relevant length scales are the diameters and the mean inter
particle distancel 5n21/2, whose ratiol * [ l /s5(n* )21/2

'1.4. Thus, the mean collision timetc can be estimated
through the relation (l 2s)2'4D0tc ~whereD0 is the free
diffusion coefficient!, and is given by tc'@(n* )21/2

TABLE I. Simulation parameters. First column, soft disk syste
~SD! ~studied in Sec. III!, dipole-dipole system~DD!, Yukawa po-
tential with Gayloret al. parameters (G), Yukawa potential with
Härtl et al. parameters (H), Soft sphere system~SS!, and hard
sphere system~HS!. In each caseN is the number of particles,f the
volume fraction,Dt* the dimensionless time step, NC the numb
of configurations for statistical properties, and TC is the total nu
ber of configurations.

System N f Dt* NC TC

SD 500 0.3927 4.931027 8.03103 1.6153108

DD 1000 0.0322 6.9531025 8.03103 8.33105

G 800 0.00044 4.4831024 4.03103 4.153105

H 800 0.000524 1.031023 4.03103 4.153105

SS 338 0.5146 1.639731025 5.53105 5.53105

HS 305 0.465 7.363107 9.23107
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21#2t0/4, with t0[s2/D0. Thus, for the system we are dis
cussing,tc /t0'0.04. This is the time scale that defines t
intermediate-time regime illustrated in Figs. 1~a! and 1~b!,
which presentsG(r ,t) for two times, t/t050.01 andt/t0
50.06. Figure 1~a! illustrates the high degree of accuracy o
the SCGLE theory, which overlaps completely with th
simulation data. This is indeed expected, since the SCG
theory has built-in exact short-time behavior@3#. In fact, for
these early times, the SEXP, which is a much simpler the
@21,22#, is almost equally accurate@dashed line in Fig. 1~a!#.
For the longer time in Fig. 1~b!, however, the differences
between the SCGLE theory and the SEXP approximation
now much more appreciable, mostly at small distances,
becomes negligible at longer distances. For all distan
however, the SCGLE theory virtually overlaps with th
simulation data~at small values ofr, the accuracy of the
simulation results becomes increasingly poorer, due to p
statistics, and this is the source of the deviations between
SCGLE theory and the simulation data nearr 50).

In order to illustrate the relaxation of concentration flu
tuations for the same system, but now in Fourier space
Fig. 2 we compare the static structureS(k), which is the
initial value F(k,t50) of the intermediate scattering func
tion, with what remains after a timet/t050.06 @the time
corresponding to Fig. 1~b!#. In general, we found for othe
times, and also for other concentrations studied, what is
lustrated in this figure, namely, that the predictedF(k,t)
matches the computer simulatedF(k,t) for all wave vectors,
and that the largest disagreements occurs at the positionkmax
of the first peak of the static structure factor. Thus, a su

r
-

FIG. 1. van Hove functionG(r ,t) of the Brownian fluid with
pairwise interactions given by Eq.~12! at n* 50.5 at ~a! t/t0

50.01 and~b! t/t050.06. SCGLE theory~solid line!, SEXP theory
~dashed line!, and Brownian dynamics~BD! simulation results
~symbols!.
8-5
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mary of the comparisons discussed so far can be present
terms of a comparison of the time evolution of the maximu
F(kmax,t) scaled withS(kmax), as predicted by the SCGLE
theory, with the computer simulation data. This summary
presented in Fig. 3. Notice that the predictions of the SCG
continue to agree quite well with the simulation data for
times@Fig. 3 now includes times of the order of 2.5 times t
mean collision time, at which there is almost no remnant
the initial structureS(k)].

The results presented in Figs. 1–3 allow us to conclu
that the accuracy of the SCGLE theory is indeed quite g
for this model system involving a hard-disk-like, but co
tinuous, potential. In the following section we perform
similar analysis for a longer-ranged power-law potential.

FIG. 2. Intermediate scattering functionF(k,t) for the system as
in Fig. 1 at t50 @i.e., the static structure factorS(k)] and t/t0

50.06. SCGLE theory~solid line! and BD results~symbols!.

FIG. 3. Intermediate scattering functionF(k,t) normalized with
S(k) at the positionkmax of the main peak ofS(k), as a function of
dimensionless timet/t0, for the same system as in Fig. 1. SCGL
theory ~solid line!, SEXP theory~dashed line!, and BD simulation
results~symbols!.
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IV. TWO-DIMENSIONAL SYSTEM WITH DIPOLE-DIPOLE
„RÀ3

… INTERACTIONS

In this section we discuss the results of the SCGLE the
for the dynamics of another two-dimensional system, t
time with long-ranged repulsive interactions. This model s
tem corresponds, as far as the interaction forces is concer
to the quasi-two-dimensional system of paramagnetic col
dal particles studied by Zahnet al. @29#. We define this sys-
tem by the pair potential

bu~r !5H A/r 3, r .s

`, r ,s
~13!

and by its number concentration~per unit area! n. The spe-
cific conditions that we shall consider correspond to a v
dilute suspension according to the reduced number con
tration n* 5ns2, which will be n* 50.041 (f5pn* /4
50.0322). In contrast, the amplitudeA/s3 of the dipolar
interaction at hard-core contact will be large enough@bu(r
5s)'530#, so that, in reality, hard-disk contact is pre
vented by the strong dipole-dipole repulsion. Thus, the o
meaningful term in the interaction potential is the dipo
dipole term, which can also be written as

bu~r !5
G

~r / l !3
, ~14!

whereG5A/ l 3, with l 5n21/2. For the conditions considere
here,G54.4.

For this system we also calculated theoreticallyG(r ,t)
and F(k,t) for short and intermediate times, and compar
them with the corresponding simulation data. The scena
turns out to be quite similar to that described for the syst
of the preceding section, concerning the general accurac
the SCGLE theory. Thus, Fig. 4 illustrates a comparison ty
cal of the intermediate-time regime (t/t051.666, with t0

FIG. 4. van Hove functionG(r ,t) for the Brownian fluid with
pairwise interactions given by Eq.~14! with G54.4 and n*
50.041 att/t051.666. SCGLE theory~solid line!, SEXP theory
~dashed line!, and BD results~symbols!.
8-6
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SELF-CONSISTENT THEORY OF COLLECTIVE . . . PHYSICAL REVIEW E 67, 021108 ~2003!
5s2/D0). This figure, as well as Fig. 5, also includes t
results of the SEXP approximation. For the conditions of F
4, the limitations of this simpler theory are already qu
evident. Figure 5 includes the information of Fig. 4, but
Fourier space, as well asF(k,t) for another, shorter, time
(t/t050.0833t0). For reference, the static structure fact
S(k)5F(k,t50) is also included in this figure. Figures
and 5 illustrate the high accuracy of the SEXP theory at sh
times, and the excellent level of accuracy of the SCG
results forF(k,t) in the intermediate-times regime for a
wave vectors. In Fig. 6, we compare the theoretical pred
tions for the decay of the main peak ofF(k,t) with the
simulation data for a longer time span.

This comparison indicates that although there are sm
systematic differences with respect to the exact~simulation!
data, these are not appreciable within the resolution of F
4–6. Thus, the SCGLE theory continues to provide an ex
lent quantitative description of the relaxation of the conc
tration fluctuations for times well beyond the intermedia
time regime. We may recall that the correspondi
differences were also virtually negligible in the case of t
two-dimensional repulsive Yukawa system that was e
ployed in Ref.@3# to illustrate the quantitative application o
the SCGLE theory. That system, however, was precisely
system employed to calibrate the only element of the the
that could not be determined from more basic principl
namely, the interpolating functionl(k) of Eq. ~11!. The
SCGLE results for both two-dimensional model syste
studied in this and in the preceding section involve neithe
different interpolating function nor additional or specifi
calibration procedures: here we employed the same inte
lating function determined in Ref.@3#, namely, Eq.~11!. Our
present comparisons simply show that this continues to b
excellent choice ofl(k) also for both of these additiona
two-dimensional model systems.

FIG. 5. Intermediate scattering functionF(k,t) for the same
system as in Fig. 4 att50 @static structure factorS(k), dotted line#,
t/t050.0833, andt/t051.666. SCGLE theory~solid line!, SEXP
theory ~dashed line!, and BD simulation results~symbols!.
02110
.

rt

-

ll

s.
l-
-
-

-

e
ry
,

s
a

o-

an

V. THREE-DIMENSIONAL REPULSIVE YUKAWA
POTENTIAL

In this section we present a similar comparison, but t
time involving a relevant three-dimensional system, nam
the repulsive Yukawa potential,

bu~r !5H K
e2z(r /s21)

~r /s!
, r .s

`, r ,s.

~15!

This corresponds to the electrostatic contribution of the w
known Derjaguin-Landau-Verwey-Overbeek potent
@30,31#. Here we consider the regime of strong electrosta
repulsion (K@1) and weak screening (z5¸s,1), so that
the hard-sphere diameter, as in the previous example, is
an arbitrary unit length of no physical significance.

We have compared the theoretical predictions of o
theory with the corresponding Brownian dynamics~BD!
computer simulations for several values of the parameterK
andz of this system, and for various concentrations that
express in terms of the volume fractionw[pns3/6. In all
these comparisons, which we do not report in detail, we
serve the same scenario, which we illustrate here for
particular sets of parameters, for which Brownian dynam
simulations have been reported in the literature. The fi
corresponds to the parametersK5556, z50.149, andw

FIG. 6. Intermediate scattering functionF(k,t) normalized with
S(k) at the positionkmax of the main peak ofS(k) as a function of
t/t0 for the same system as in Fig. 4. SCGLE theory~solid line!,
SEXP theory~dashed line!, and BD results~symbols!.
8-7
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YEOMANS-REYNA et al. PHYSICAL REVIEW E 67, 021108 ~2003!
54.431024, employed by Gayloret al. @28#, and the second
to the parameters of the system studied by Ha¨rtl et al. @32#,
namely,K51002.74,z50.222, andw55.2431024.

As a matter of elementary routine checking of our ow
BD simulations, in both cases we first reproduced the
ported simulation runs, and verified the full agreement
tween the reported results forG(r ,t) and our reproduction
run. We then performed a second run with a much lar
number of particles~but otherwise with the same paramete
as the original runs!. The new results forG(r ,t), Gs(r ,t),
and Gd(r ,t) did not differ from those of the previous run
However, they extended the range inr to improve the fit of
the asymptotic tails, and hence, the accuracy of the Fou
transforms to get the intermediate scattering functions. F
ure 7 compares the results of both runs for the radial dis
bution functions of the two systems. This structural inform
tion was also the static input in the calculation of the resu
of the SCGLE theory. Similar agreement as in Fig. 8 w
observed between the results forG(r ,t) of the two runs for
all the nonzero times reported below.

In Fig. 8 we compare the theoretical and the simulat
results for the intermediate scattering function for the sys
of Gayloret al. Let us first say that we found a slight diffe
ence between our simulation data forF(k,t) and the reported
results of Gayloret al., particularly near the main peak
These differences are illustrated in Fig. 8, where we a
include the data of Gayloret al. ~as digitized from Fig. 1 of
Ref. @12#!, for the shortest and the longest nonzero tim
considered in the figure. These differences are due to
different accuracy of the processing of the data forG(r ,t) to
get F(k,t). This must be considered in drawing conclusio
from a comparison of theoretical results with computer sim
lation data forF(k,t). The conclusions that concern us he
refer to the comparison of our theoretical results with o
own, more precise, BD data forF(k,t). From Fig. 8, we

FIG. 7. Simulated radial distribution functiong(r ) for the re-
pulsive Yukawa potential. Open circle and solid line:K5556, z
50.149, andf54.431024 studied by Gayloret al. ~Ref. @28#!;
open triangle and dashed line:K51002.74, z50.222, andf
55.2431024 studied by Ha¨rtl et al. ~Ref. @32#!.
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conclude that our theory tends to relax somewhat faster t
our BD simulation data at the main peak and at larger w
vectors. If we were to compare with the digitized data
Gaylor et al., we would conclude the opposite, i.e., that o
theoretical results at the main peak relax more slowly th
the simulations. We should mention that Banchioet al. @12#
compared their mode-coupling theory~MCT! results with the
data of Gayloret al., with which they found complete agree
ment. Hence, according to the comparison in Fig. 8, th
MCT results relax faster than our SCGLE predictions, a
even faster than our more precise BD data. These con
sions, however, should not be taken as a definitive ass
ment of the relative accuracy of the MCT and the SCG
theories, since the comparison is probably not fair for
MCT. This is because our SCGLE results involved the use
the exact static input in Fig. 7, whereas Banchioet al. em-
ployed the rescaled mean spherical approximation fit of
reported static structure factor of the data of Gayloret al. for
S(k) as the static input of their MCT results.

Our current concern, however, is to learn and docum
the virtues and limitations of our SCGLE theory. For e
ample, we can compare separatelyFs(k,t) andFd(k,t) with
the corresponding BD data. This is done in Fig. 9. There
find that the theoretical predictions forFd(k,t) match the
simulation results with a high degree of quantitative ac
racy, whereas the results forFs(k,t) clearly exhibit a faster
relaxation with respect to the BD data. Unfortunately, w
cannot know if other theories will also exhibit similar qua

FIG. 8. Intermediate scattering functionF(k,t) for the repulsive
Yukawa potential withK5556, z50.149, andf54.431024 at t
50, 0.1, 0.6, and 1.6 ms. SCGLE theory~solid line!, our BD
simulation results~open circles!, andF(k,t) data taken from Gaylor
et al. ~filled circles!.
8-8



ul
th
o

p
c
m

th
e
he

is
rin
e
lud

in
v

or
a

ha
o

ia
s
th
w
th
n

ft

tial
rite

of
its

he
ws

ion

he
he

tial
the
nal

.

d

SELF-CONSISTENT THEORY OF COLLECTIVE . . . PHYSICAL REVIEW E 67, 021108 ~2003!
tative features. In our case, however, this information co
be used if attempts were made to quantitatively finetune
theory by means, for example, of a different prescription
the interpolating functionl(k).

The system studied by Ha¨rtl et al. is clearly more struc-
tured than the one in the previous example, as can be ap
ciated from the comparison of the radial distribution fun
tions in Fig. 7. However, we observed essentially the sa
scenario found for the system of Gayloret al. for the inter-
mediate scattering functions. What we report here is only
relaxation ofF(k,t) as a function of time at two fixed wav
vectors (ks50.60 and 0.69, the latter corresponding to t
position of the main peak of the static structure factor!, for
which Härtl et al. report BD data, and Banchioet al. report
MCT results. This is done in Fig. 10. Our BD data in th
figure derive from the second, more accurate run. Compa
the SCGLE results with our data, we see that there is quit
acceptable quantitative agreement. In Fig. 10 we also inc
the MCT results and the BD data of Ha¨rtl et al., read from
Fig. 2~b! of Ref. @12#. Again, there are some discrepancies
both sets of simulation data, particularly for the smaller wa
vector, and the MCT results are favored by our new, m
precise BD data at the main peak, but not at the other w
vector.

In summary, the comparisons in this section indicate t
our self-consistent theory provides a reliable description
the dynamics of the three-dimensional Yukawa Brown
fluid. The actual quantitative accuracy is not as perfect a
the case of the two-dimensional Yukawa system, or of
other two-dimensional systems studied in this work. Ho
ever, the idea here was to apply the same version of
SCGLE to systems other than the specific two-dimensio
system for which the theory was initially calibrated.

VI. THREE-DIMENSIONAL SYSTEM WITH STRONGLY
REPULSIVE FORCES

In this section we consider a three-dimensional system
Brownian particles interacting through some form of so

FIG. 9. Distinct and self parts ofF(k,t) for the system as in Fig
8 at t50.1, 0.6, and 1.6 ms. SCGLE theory~solid, dashed, and
dotted lines! and BD simulation results~open circles, squares, an
triangles!.
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but strongly repulsive and short-ranged, pair potentialu(r ).
For our present purpose, the particular form of this poten
is irrelevant. For concreteness, however, we choose to w
it as

bu~r !5
1

~r /ss!
2n

2
2

~r /ss!
n

11 ~16!

for 0,r ,ss , and assume that it vanishes forr .ss . In this
equation,n is a positive integer. The only convenience
this particular functional form is that this potential and
derivative strictly vanish at, and beyond,ss , and that this
family of soft-core potentials is being investigated in t
context of a dynamic correspondence principle that allo
one to simulate the properties of the hard-sphere~HS! system
in the absence of hydrodynamic interactions. In this sect
we only consider the specific casen518, at a soft-sphere
volume fractionfs[pnss

3/650.5146.
In Fig. 11 we present the static input employed in t

theoretical calculations of the dynamics of this system. T
radial distribution function in Fig. 11~a! is the result of the
Brownian dynamics simulation for the soft-sphere poten
above. In Table I we provide the technical parameters of
simulation procedure. This is also based on the conventio

FIG. 10. Intermediate scattering functionF(k,t) normalized
with S(k) for ks50.60 andks50.69 as a function ofk2D0t, for
the repulsive Yukawa potential studied by Ha¨rtl. SCGLE theory
~solid lines!, MCT theory ~dashed lines!, BD simulations taken
from Härtl et al. ~Ref. @32#! ~open circles!, and our BD results
~filled circles!.
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YEOMANS-REYNA et al. PHYSICAL REVIEW E 67, 021108 ~2003!
Ermak-McCammon algorithm, which applies without spec
difficulties for the system under consideration. Figure 11~a!
also includes the radial distribution function of the har
sphere system at the same number concentrationn, but with
an effective diametersh50.9667, corresponding to a H
volume fraction of 0.465. This was obtained by means of
accurate Monte Carlo simulation, also described, in its te
nical details, in Table I. As we can see from Fig. 11~a!, the
static structure of these two systems is identical, except f
small region near the first maximum ofg(r ). These differ-
ences, however, are virtually indistinguishable in the sta
structure factor, in the scale of Fig. 11~b!. The static structure
factor was calculated from the Fourier transform of the so
curve in Fig. 11~a!, which is the fit of the actual simulation
data forg(r ), extended to longer distances by the analy
tail suggested by Ha¨rtl et al.

With the static inputs in Fig. 11, we now solve our se
consistent scheme to calculate the van Hove function an
self and distinct parts for our soft-sphere system, as wel
the ~full, self, and distinct! intermediate scattering function
In Fig. 12 we illustrate the comparison between our theo
ical results and the Brownian dynamics simulations
F(k,t) at three different values of the correlation time~in
units of ts[ss

2/D0). We observe that our theory gives a
initially excellent description of the decay of the main pe
of F(k,t), although at longer times this peak relaxes mo
slowly according to our theory, in comparison with the sim
lation data. For wave vectors beyond the first peak, on
other hand, the theoretical predictions are more inaccura
all times; they first relax faster than the simulation data, a
later they relax more slowly. Just for coincidence, at so
intermediate time the agreement actually looks impress
The sequence illustrated in the figure provides a precise
sessment of the overall accuracy of our theory. A fair jud
ment of these comparisons, however, must take into acc
the fact that the conditions illustrated in this figure cor

FIG. 11. ~a! Simulated radial distribution functiong(r ) for the
soft sphere potential in Eq.~16! with n518 andf50.5146~solid
line!, and for a hard sphere system withf50.465~dashed line!; ~b!
static structure factor for the soft sphere system.
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spond to about 90% of the freezing volume fraction of o
system, which is rather demanding for a theory that does
include any adjustable parameter or rescaling prescript
of any sort.

Our theoretical scheme is, of course, open for impro
ment concerning its detailed quantitative accuracy, if such
aspect happens to be crucial. After all, there is nothing f
damental in the specific interpolating functionl(k), which
we chose not to touch in the calculation of all the resu
reported in this paper. If the situation would justify it, how
ever, we can finetune this function through its specific ca
bration for the system of interest. Nevertheless, at this p
the idea is to establish the virtues and limitations of o
self-consistent scheme in its most rudimentary version. T
device of any improved version, however, will benefit fro
the comparisons that our present Brownian dynamic res
allow us to make.

For example, we can compare separately the self and
distinct parts of the intermediate scattering function. Fro
such a comparison, we again discover that the theore
predictions for the distinct part are far more accurate than
self and the full intermediate scattering functions, and th
virtually superimpose on the corresponding BD data. T
main source of the discrepancies seen in Fig. 12 for the
F(k,t) then derives essentially from inaccuracies of its s
part, which is illustrated in Fig. 13. This figure exhibits th
same trend inFs(k,t) as observed in Fig. 12 inF(k,t),
namely, a faster decay at short times and large wave vec
and a slower decay at long times, for all wave vectors.
though the inaccuracies of the theoretical results for
Fs(k,t) could be removed to a large extent by anad hoc
calibration of the interpolating function, this is not the pu
pose of the work reported here.

More interesting is the fact that, upon a simple rescal
of the data, all that we have said so far in this section a
refers to a hard-sphere system at a volume fraction of 0.4
In a separate communication, this dynamic equivalence

FIG. 12. Intermediate scattering functionF(k,t) for the soft
sphere system as in Fig. 11 att/t050.006 559, 0.026 23, 0.052 47
SCGLE theory~solid, dashed, and dotted lines! and BD results
~open circles, squares, and triangles!.
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SELF-CONSISTENT THEORY OF COLLECTIVE . . . PHYSICAL REVIEW E 67, 021108 ~2003!
tween soft- and hard-sphere systems is demonstrated
proposed as an alternative algorithm to simulate the dyn
ics of a hard-sphere dispersion in the absence of hydro
namic interactions@33#. Thus, in Fig. 14 we compare th
decay ofF(k,t) for the same system at two fixed wave ve
tors corresponding to the position of the first maximum a
the first minimum of the static structure factor. In terms
the dimensionless variables employed in Fig. 14, there is
need for any rescaling of the data in order for the sa
figure, which corresponds to a soft-sphere system atfs
50.5146, to represent also the properties of a HS syste
fh50.465. As we can see from this comparison, our the
provides quite a good description of the overall decay of
intermediate structure factor in the short- and intermedia
time regimes. We must say, however, that at much lon
times, the slow relaxation of the self component leads t
poorer comparison, particularly at the main peak. This
comes more severe as the volume fraction is increased
ther. In fact, we also performed the same comparison as
plained in this section for the soft-sphere volume fraction
fs50.5534, which corresponds to a HS system atfh50.5
~slightly above freezing!. We find that our results for the
decay ofF(k,t) at the minimum of the structure factor are
reasonable agreement with our own simulation data. We
checked that our BD data are also in agreement with th
reported by Cichocki and Felderhof. Banchioet al.compared
their rescaled MCT with such data and found very go
agreement. Unfortunately, in neither of these works inform
tion is given for the decay at the position of the main peak
S(k). In our case, we find that for such a case our theoret
results depart considerably from our BD data. A more

FIG. 13. Same as in Fig. 12, but for the self part ofF(k,t).
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tailed report of these comparisons, together with a discus
of their experimental relevance, will be given, however, in
separate communication@34#.

VII. SUMMARY AND DISCUSSION

In this paper we have presented an extensive applica
of the SCGLE theory of colloid dynamics to a set of mod
suspensions without hydrodynamic interactions. In its ori
nal presentation, this theory was applied to a particu
model system, namely, the two-dimensional repuls
Yukawa Brownian fluid. That application, however, als
served to determine one element of the theory that could
be determined from more fundamental principles, nam
the interpolating functionl(k) of Eq. ~10!. Thus, the doubt
was left concerning the usefulness of that specific presc
tion for other systems, with the same or different dimensio
ality. The results presented in this paper illustrate the f
that this aspect of the theory should be of little conce
There are, indeed, small systematic deviations, particul
in the relaxation ofF(k,t) near its main peak, and these we
illustrated in Figs. 3, 6, and 8. These deviations, howev
only reflect the approximate nature of the theory, and exh
the magnitude of the intrinsic accuracy of the approxim
tions involved. One of them is precisely the particular fun
tional form of the interpolation functionl(k).

FIG. 14. Intermediate scattering functionF(k,t) normalized
with S(k) for kmaxss57.13 andkminss59.92 as a function ofk2D0t
for the soft sphere system as in Fig. 11. SCGLE theory~solid lines!,
and BD simulations results~open circles!.
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YEOMANS-REYNA et al. PHYSICAL REVIEW E 67, 021108 ~2003!
There is certainly noa priori reason to expect that th
simple expression in Eq.~10! should have any form of uni
versal character. However, the expectation that a given
posal forl(k), calibrated with a given model system, w
work well for other systems turns out to be fulfilled to
satisfactory degree, according to the results reported in
paper. Let us mention that, besides the model systems
ported here, we also performed similar exercises with ad
tional pair potentials, including systems with an attract
potential well, with similar conclusions as those report
here.

We may say, in summary, that the SCGLE theory of c
loid dynamics seems to be one of the most accurate qu
tative theories for which extensive calculations have b
performed for the collective diffusion properties of monod
perse suspensions in the absence of hydrodynamic inte
tions. Real suspensions exist for which hydrodynamic in
actions may indeed be neglected, and for which the SCG
theory should be directly applicable. The idea is, however
employ what we have learned from the present exercis
the attempts to extend this theory to include the effects
hydrodynamic interactions. The results of such attempts
be reported separately@34#.
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Noyola acknowledges the kind hospitality of the Depar
mento de Fı´sica del Centro de Investigacio´n y de Estudios
Avanzados del Instituto Polite´cnico Nacional~CINVESTAV-
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APPENDIX: STATIC PROPERTIES

For immediate reference, in this appendix we quote
expressions for the static propertiesx(k), L0(k), xS(k), and
LS

0(k) associated withF(k,z) andFS(k,z) @see Eqs.~1!–~4!#
in terms of the two- and three-particle correlation function
g(r ) and g(3)(r ,r 8). For the details of their derivation, w
refer the reader to the original source, namely, Ref.@5#.
These expressions are
x~k!5S kBT

m D 2F11nE drg~r !
]2bu~r !

]z2 S 12cos~kz!

k2 D 2
1

S~k!G , ~A1!

M2b2L0~k!5nD0E d3rg~r !
]2bu~r !

]z2
@112 coskz#2

D0n2

k2 F E d3rg~r !
]2bu~r !

]z2
~12coskz!G 2

1
2D0n

k E d3rg~r !
]3bu~r !

]z3
sinkz1

2D0n

k2 E d3rg~r !~12coskz!F],bu~r !

]z G2

1
D0n2

k2 E d3rd3r 8g~r ,r 8!$122 coskz1cos@k~z2z8!#%F],bu~r !

]z GF ],8bu~r 8!

]z8
G , ~A2!

x (S)~k!5
~kBT/M !2

k2 FnE drg~r !
]2bu~r !

]z2 G , ~A3!
r
re-
the
and

k2M2b2LS
0~k!5k2D0FnE drg~r !

]2bu~r !

]z2 G
2D0n2F E d3rg~r !

]2bu~r !

]z2 G 2

12D0nE d3rg~r !F],bu~r !

]z G2
1D0n2E d3rd3r 8g~r ,r 8!F],bu~r !

]z G
3F ],8bu~r 8!

]z8
G . ~A4!

In the equations above,u(r ) is the effective interaction pai
potential between colloidal particles. Finally, we should
peat that in this paper we have systematically dropped
subindex ‘‘UU ’’ employed in Ref.@5#, wherex(k), x (S)(k),
8-12
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L0(k), and LS
0(k) are denoted, respectively, byxUU(k),

xUU
(S) (k), LUU(k), andLUU

(S) (k).
The integral involvingg(3)(r ,r 8) in the last term of Eq.

~A2! was evaluated, in practice, introducing the use of Ki
wood’s superposition approximation, g(3)(r ,r 8)
'g(r )g(r 8)g(ur2r 8u), plus the additional simplification o
approximatingg(ur2r 8u) by its asymptotic value of 1. This
leads to replacing the integral

Dm(3)~k![E dr 8drg~r ,r 8!„122 cos~k•r !

1cos$@k•~r2r 8#%…~k•“ !~k•“8!

3~“•“8!bu~r !bu~r 8! ~A5!
n
st

,

m

.

.

ys
-

.
on
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by

Dm(3)~k!5F E drg~r !@12cos~k•r !#~k•“ !“bu~r …#2.

~A6!

The corresponding approximate expressions for the cas
self-diffusion are identical, ignoring the term involvin
cos(k•r ) in these two equations. Thus, within these appro
mations, the only static input needed by the SCGLE theor
g(r ).
J.
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